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ABSTRACT
This paper considers the problem of blind active spread-
spectrum (SS) steganalysis defined as the extraction of hid-
den data with no prior information. We first develop a multi-
signature iterative generalized least-squares (M-IGLS) core
procedure to seek unknown messages hidden in image hosts
via multi-signature direct-sequence spread-spectrum embed-
ding. Neither the original host nor the embedding signatures
are assumed available. Then, cross-correlation enhanced M-
IGLS (CC-M-IGLS), a procedure described herein in detail
that is based on statistical analysis of repeated independent
M-IGSL processing of the host, is seen to offer most effec-
tive hidden message recovery. In fact, experimental studies
show that the proposed CC-M-IGLS active SS steganaly-
sis algorithm can achieve probability of error close to what
may be attained with known embedding signatures and host
autocorrelation matrix.
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1. INTRODUCTION
Steganography, which literally means “covered writing” in
Greek, is the process of hiding data under a cover medium
(also referred to as host), such as image, video, or audio [1]-
[3]. The basic purpose of steganography is to establish covert
communication between trusting parties. While other data
hiding applications (such as watermarking [4]-[6]) have their
own individual requirements, the broad common objective
of most steganographic applications is a satisfactory trade-
off between hidden data resistance to noise/disturbance (ro-
bustness), information delivery rate (payload), and low host
distortion for concealment purposes.

Steganalysis, which is the countermeasure technology to
steganography, aims to discover the presence and/or extract
the content of the secret data. Accordingly, steganalysis can
be classified into two categories [7], passive and active. The
primary task of passive steganalysis is to decide the pres-
ence or absence of hidden messages in given media objects.
In contrast, active steganalysis refers to the effort of extract-
ing the actual hidden data1. While passive steganalysis is
being intensively investigated in the past few years [9]-[17],
active steganalysis is a relatively new branch of research. To
our best knowledge, there seems to have been little attempt
in developing active steganalysis methods that can blindly
extract the secret data.

In this work, we focus our attention on active spread-spectrum
(SS) steganalysis. In particular, we aim to recover blindly se-
cret data hidden in image hosts via (multi-signature) direct-
sequence SS embedding [18]-[25]. Neither the original host
nor the embedding signatures (spreading sequences) are known
(fully blind SS steganalysis). In blind active SS steganalysis
the unknown host acts as a source of interference/disturbance
to the data to be extracted and, in a way, the problem paral-
lels blind signal separation (BSS) applications as they arise

1In another interpretation of active steganalysis, the stegan-
alyst manipulates the embedded data, such as introducing
noise, in hopes of destroying the secret message (if any) [8].
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in the fields of array processing, biomedical signal process-
ing, and code-division multiple-access (CDMA) communica-
tion systems. Under the assumption that the embedded se-
cret messages are independent identically distributed (i.i.d.)
random sequences and independent to the cover host, in-
dependent component analysis (ICA) -one particular family
of BSS methods- may be utilized to approach the hidden
data extraction problem [7],[26]. However, ICA-based BBS
algorithms degrade rapidly in the presence of correlated sig-
nal interference as is the case in SS image embedding. In
[27], Gkizeli et al. developed an iterative generalized least
squares (IGLS) procedure to blindly recover unknown mes-
sages hidden in image hosts via SS embedding. The algo-
rithm has low complexity and remarkably good recovery per-
formance. However, the scheme is designed solely for single-
signature SS embedding where messages are hidden with
one signature only. Realistically, a steganographer would
favor multi-signature SS embedding to increase security and
payload rate. The work in [27] is not generalizable to the
multi-signature case.

In this paper, we develop a new multi-signature iterative
generalized least squares (M-IGLS) SS steganalysis algo-
rithm for hidden data extraction. For improved recovery
performance, in particular for small hidden messages that
pose the greatest challenge, we propose an algorithmic up-
grade referred to as cross-correlation enhanced M-IGLS (CC-
M-IGLS). CC-M-IGLS relies on statistical analysis of inde-
pendent M-IGLS executions on the host and experimental
studies indicate that can achieve hidden data recovery with
probability of error close to what may be attained with
known embedding signatures and known original host au-
tocorrelation matrix.

The rest of the paper is organized as follows. In Section
2 we present the signal model for the multi-signature SS
embedding procedure and formulate the problem of active
SS steganalysis. After developing the hidden data extraction
algorithms in Section 3, experimental studies are presented
in Section 4. Finally, some concluding remarks are drawn in
Section 5.

The following notation is used throughout the paper. Bold-
face lower-case letters indicate column vectors and boldface
upper-case letters indicate matrices; R denotes the set of all
real numbers; ()T is the transpose operator; IL is the L×L
identity matrix; sgn{·} denotes zero-threshold quantization
and E{·} represents statistical expectation. Finally, | · |, ‖·‖,
and ‖·‖F are the scalar magnitude, vector norm, and matrix
Frobenius norm, respectively.

2. MULTI-SIGNATURE SS EMBEDDING
AND STEGANALYSIS PROBLEM
FORMULATION

Consider a host image H ∈ MN1×N2 where M is the fi-
nite image alphabet and N1 ×N2 is the image size in pixels.
Without loss of generality, the image H is partitioned into
M local non-overlapping blocks of size N1N2

M
. Each block,

H1,H2, ...., HM , is to carry K hidden information bits com-
ing -potentially- from K distinct messages. Embedding is
performed in a 2-D transform domain T (such as the discrete
cosine transform, a wavelet transform, etc.). After trans-
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Figure 1: (a) Baboon image example H ∈
{0, 1, ..., 255}256×256 . (b) Host data autocorrelation
matrix (8 × 8 DCT, 63-bin host).

form calculation and vectorization (for example by conven-

tional zig-zag scanning), we obtain T (Hm) ∈ R
N1N2

M , m =
1, 2, . . . , M . From the transform domain vectors T (Hm) we
choose a fixed subset of L ≤ N1N2

M
coefficients (bins) to

form the final host vectors x(m) ∈ R
L, m = 1, 2, . . . , M .

It is common and appropriate to avoid the dc coefficient (if
applicable) due to high perceptual sensitivity in changes of
the dc value.

The autocorrelation matrix of the host data x is an impor-
tant statistical quantity for our developments and is defined
as Rx , E{xxT } = 1

M

∑M

m=1 x(m)x(m)T . It is easy to
verify that in general Rx 6= αIL, α > 0; that is, Rx is not
constant-value diagonal or “white” in field language. For
example, 8 × 8 DCT with 63-bin host data formation (ex-
cluding only the dc coefficient) for the 256 × 256 gray-scale
Baboon image in Fig. 1(a) gives the host autocorrelation
matrix Rx in Fig. 1(b).

2.1 Multi-signature SS Embedding
The K distinct message bit sequences {bk(m)}M

m=1, k =
1, 2, . . . , K, bk(m) ∈ {±1}, are hidden in the transform-
domain host vectors {x(m)}M

m=1 via additive SS embed-
ding by means of K spreading sequences (signatures) sk ∈



R
L, ‖sk‖ = 1, k = 1, 2, . . . , K,

y(m) =

K∑

k=1

Akbk(m)sk +x(m)+n(m), m = 1, 2, . . . , M, (1)

with corresponding amplitudes Ak > 0, k = 1, . . . , K; for
the sake of generality, n(m) ∼ N (0, σ2

nIL) represents poten-
tial external white Gaussian noise2 with variance σ2

n. It is
assumed that bk(m) behave as equi-probable binary random
variables that are independent in time, m = 1, ..., M , and
across messages, k = 1, ..., K. The contribution of each in-
dividual embedded message bit bk to the composite signal
is Akbksk and the mean-squared distortion to the original
host data x due to the embedded k message alone is

Dk = E{‖Akskbk‖
2} = A2

k, k = 1, 2, ..., K. (2)

Under statistical independence of messages, the mean-squared
distortion of the original image due to the total, multi-
message, insertion is D =

∑K

k=1 A2
k.

The intended recipient of the kth message can perform hid-
den bit detection by looking at the sign of the output of the
minimum-mean-square-error (MMSE) filter wMMSE ,k:

b̂k(m) = sgn{wT
MMSE ,ky(m)} = sgn{sT

k R−1
y y(m)} (3)

where Ry is the autocorrelation matrix of the stego vectors
{y(m)}M

m=1

Ry , E{yyT } = Rx +

K∑

k=1

A2
ksks

T
k + σ2

nIL. (4)

The autocorrelation matrix Ry can be estimated by sam-

ple averaging over the finite set of M stego data, R̂y =
1

M

∑M

m=1 y(m)y(m)T . Using R̂y in (3), we obtain what is
known as the sample-matrix-inversion MMSE (SMI-MMSE)
detector implementation [28].

2.2 Formulation of Active Steganalysis
Problem

We assume that the active extraction steganalyst has the
ability to obtain transform domain stego data in the form
of y(m) in (1) after performing appropriate image parti-
tion, transform, and coefficient selection3 on the image clas-
sified as stego by passive steganalysis. We denote the com-
bined “disturbance” to the hidden data (host plus noise) by

z(m) , x(m) + n(m). Then, SS embedding by (1) can be
rewritten as

y(m) =

K∑

k=1

Akbk(m)sk + z(m), m = 1, . . . , M, (5)

where z(m) is modeled as a sequence of zero-mean (without
loss of generality) vectors with autocovariance matrix Rz =

E{zzT } = Rx +σ2
nI. Let vk , Aksk ∈ R

L, k = 1, . . . , K, be

2Additive white Gaussian noise is frequently viewed as a
suitable model for quantization errors, channel transmission
disturbances, and/or image processing attacks.
3Host image partition may be estimated by examining the
difference between neighboring pixels [14]. For each investi-
gated transform, all coefficients (except the dc value) may
be considered.

amplitude-including embedding signatures. Then, we can
further rewrite SS embedding as

y(m) =

K∑

k=1

bk(m)vk + z(m) (6)

= Vb(m) + z(m), m = 1, . . . , M, (7)

where V , [v1, . . . ,vK ] ∈ R
L×K is the amplitude-including

signature matrix and b(m) ∈ {±1}K×1 is the vector of bits
embedded in the mth host block. For notational simplicity,
we can write the whole stego image data as one matrix

Y = VB + Z (8)

where Y , [y(1)y(2)...y(M)] ∈ R
L×M , B , [b(1)b(2)...b(M)] ∈

{±1}K×M , and Z , [z(1) z(2) ... z(M)] ∈ R
L×M .

Our objective is to blindly extract the unknown hidden data
B from the stego data Y without prior knowledge of the
embedding signatures sk, and amplitudes Ak, k = 1, . . . , K,
in V = [A1s1, . . . , Aksk] or the host itself x(1), . . . ,x(M) in
Z = [x(1) + n(1), . . . ,x(M) + n(M)].

3. ACTIVE STEGANALYSIS FOR HIDDEN
DATA EXTRACTION

If Z were to be modeled as Gaussian distributed, the joint
maximum-likelihood (ML) estimator of V and detector of
B would be

V̂, B̂ = arg min
B∈{±1}(K×M),

V∈RL×K

‖R
− 1

2
z (Y − VB)‖2

F (9)

where multiplication by R
− 1

2
z can be interpreted as prewhiten-

ing of the compound observation data. If Gaussianity of Z
is not to be invoked, then (9) is simply referred to as the
joint generalized least-squares (GLS) solution4 of V and B.

3.1 Multi-signature Iterative Generalized
Least-Squares Procedure

The global GLS-optimal message matrix B̂ in (9) can be

computed independently of V̂ by exhaustive search over all

possible choices under the criterion function ‖R
− 1

2
z YP⊥B‖2

F ,

B̂ = arg min
B∈{±1}K×M

‖R
− 1

2
z YP⊥B‖

2
F (10)

where P⊥B , I − BT (BBT )−1B. Exhaustive search has, of
course, complexity exponential in KM (total size of hidden
messages in bits). We consider this cost unacceptable and
attempt to reach a quality approximation of the solution
of (10) (or (9), to that respect) by alternating generalized
least-squares estimates of V and B, iteratively, as described
below.

Pretend B is known; the generalized least-squares estimate

4Generalized-least squares solutions are weighted least-
squares (WLS) solutions with optimal weighting matrices,

here R
− 1

2
z , that yield the lowest variance of the estimation

error [31],[34].



of V is

V̂GLS = arg min
V∈RL×K

‖R
− 1

2
z (Y − VB)‖2

F

= YBT (BBT )−1. (11)

Pretend, in turn, that V is known; then, the least-squares
estimate of B over the real field is

B̂real
GLS = arg min

B∈RK×M
‖R

− 1
2

z (Y − VB)‖2
F

= (VT R−1
z V)−1VT R−1

z Y. (12)

Observing that

(VT R−1
z V)−1VT R−1

z = (VT R−1
y V)−1VT R−1

y , (13)

we rewrite

B̂real
GLS = (VT R−1

y V)−1VT R−1
y Y (14)

and suggest the approximate binary message solution

B̂binary
GLS = arg min

B∈{±1}K×M
‖R

− 1
2

z (Y −VB)‖2
F

' sgn{(VT R−1
y V)−1VT R−1

y Y}. (15)

The proofs of (11), (12), and (13) are provided in the ap-
pendix.

The multi-signature iterative generalized least-squares (M-
IGLS) procedure suggested by the two equations (11) and

(15) is now straightforward. Initialize B̂ arbitrarily and al-
ternate iteratively between (11) and (15) to obtain at each
step conditionally generalized least squares estimates of one
matrix parameter given the other. Stop when convergence
is observed. Notice that (15) requires knowledge of the au-
tocorrelation matrix of the stego data Ry which can be
estimated by sample averaging over the received data ob-

servations, R̂y = 1
M

∑M

m=1 y(m)y(m)T . The M-IGLS SS
steganalysis algorithm is summarized in Table 1. Super-
scripts denote iteration index. For the sake of mathematical
accuracy, we emphasize that there is always a sign/phase
ambiguity present when one considers joint data extraction
and signature identification. The sign ambiguity problem
can be overcome with a few known or guessed data symbols
for sign correction.

3.2 Cross-Correlation Enhanced M-IGLS
We understand that, with arbitrary initialization, conver-
gence of the M-IGLS procedure described in Table 1 to the
optimal GLS solution of (9) is not guaranteed in general.
Extensive experimentation with the algorithm in Table 1
indicates that, for sufficiently long messages hidden by each
signature (M = 4Kbits or more, for example), satisfac-

tory quality message decisions B̂ can be obtained. How-
ever, when the message size is small, M-IGLS may very well
converge/return wrong solutions. The quality (generalized-
least-squares fit) of the end convergence point depends heav-
ily on the initialization point and arbitrary initialization -
which at first sight is unavoidable for blind steganalysis- of-
fers little assurance that the iterative scheme will lead us to
appropriate, “reliable” (close to minimal generalized least-
squares fit) solutions. Re-initialization and re-execution of
the M-IGLS procedure is always possible but the challenge

Table 1: Iterative generalized least-squares SS ste-
ganalysis

1) d := 0; initialize B̂(0) ∈ {±1}K×M arbitrarily.
2) d := d + 1;

V̂(d) := Y(B̂(d−1))T
[
(B̂(d−1))(B̂(d−1))T

]−1

;

B̂(d) := sign

{(
(V̂(d))T R̂−1

y (V̂(d))
)−1

(V̂(d))T R̂−1
y Y

}
.

3) Repeat Step 2 until B̂(d) = B̂(d−1).

is how to assess whether solutions returned by the M-IGLS
procedure are reliable or not without any side information.
The rest of this section is devoted to addressing this chal-
lenge.

Since B̂ and V̂ are jointly detected and estimated, corre-
spondingly, if one is not reliable neither is the other in gen-
eral. We first examine the reliability of the bit matrix deci-

sion B̂ = [b̂1, . . . , b̂K ]T returned by the M-IGLS procedure
of Table 1. The sample cross-correlation between any two
bit streams is

ηi,j , b̂T
i b̂j/M, i 6= j, i, j = 1, . . . , K. (16)

Formally, the true information bits are independent within
user streams and across users. If ηi,j were to be viewed
as approximately normally distributed with zero mean and
variance 1

M
, then the probability of |ηi,j |, i 6= j, being larger

than, say, the threshold value 3√
M

is very low at about 0.3%

(we can calculate Pr(|ηi,j | > 3√
M

) ≈ 0.003). Motivated by

this calculation, we introduce below Criterion 1 that classi-
fies convergence points of the M-IGLS procedure in Table 1
as “compliant” or not based on the sample statistics of the

returned data matrix B̂.

Criterion 1: If |ηi,j | ≤
3√
M

for all i 6= j ∈ {1, 2, . . . , K},

then (B̂, V̂) returned by the M-IGLS procedure in Table 1
are classified as “Criterion-1-compliant.” �

Criterion 1 provides the means for coarse identification of
unreliable solutions. An unreliable convergence point would
then trigger re-initialization and re-execution of the M-IGLS
procedure in Table 1 until a Criterion-1-compliant point is
obtained. To enhance the end accuracy of blind hidden data
extraction, we propose one additional criterion based on the

returned estimated signature matrix V̂. We will motivate
our proposal by examining experimentally the normalized
cross-correlation between the estimated signatures v̂k re-
turned by the Criterion-1-equipped M-IGLS procedure and
the true signatures vk, k = 1, . . . , K. We consider as a
host example the gray scale 256 × 256 “Baboon” image of
Fig. 1(a) and perform 8 × 8 block DCT embedding by (1)
over all bins except the dc coefficient with K = 4 distinct
arbitrary signatures sk ∈ R

63 and per-message distortion
Dk = 31.5dB, k = 1, . . . , 4. For the sake of generality, we
also incorporate white Gaussian noise of variance σ2

n = 3dB.
We run the Criterion-1-equipped M-IGLS procedure 400
times. The histogram of the normalized cross-correlation

values θk ,
v̂

T
k vk

‖v̂k‖‖vk‖ of the four hundred returned solutions

for message k = 1 in Fig. 2 (representative of all other mes-
sages) reveals that Criterion 1 is not by itself sufficient to
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Figure 2: Histogram of normalized cross-correlation
between v̂1 and v1 (256 × 256 Baboon image, 8 × 8
DCT, L = 63, K = 4, Dk = 31.5dB, k = 1, . . . , 4, σ2

n =
3dB; v̂1 returned by Table 1 M-IGLS steganalysis
procedure).

eliminate erroneous solutions. Yet, there exists a tight clus-
ter/region formed by 210 or so of the Criterion-1-equipped
M-IGLS convergence points around the true embedding sig-
nature.

The basic idea now behind our second and final refinement
of the M-IGLS blind hidden data extraction procedure is to
identify and average these reliable clustered estimates. Of
course, identification of the reliable estimates is not a trivial
task due to our complete lack of knowledge of vk (or sk),
k = 1, . . . , K. In this context, assume that we have P esti-

mates of vk denoted by v̂
(j)
k , k = 1, . . . , K, j = 1, . . . , P ,

obtained by P runs of the Criterion-1-equipped M-IGLS
procedure. From the example of Fig. 2, we understand

that reliable estimates v̂
(j)
k of vk have high normalized cross-

correlation (close to 1) with each other, while they will have
low normalized cross-correlation with other unreliable es-
timates of vk. In contrast, unreliable estimates will tend
to have low normalized cross-correlation with each other.
Therefore, the reliability of v̂

(j)
k may be quantified/assessed

by examining the sum-cross-correlation with the other v̂
(t)
k ,

t 6= j ∈ {1, . . . , P},

ρ
(j)
k ,

P∑

t=1,t 6=j

|v̂(j)H
k v̂

(t)
k |

‖v̂(j)
k ‖‖v̂(t)

k ‖
. (17)

A reasonable threshold value for binary reliability classifica-
tion may be the average value

ρk ,
1

P

P∑

j=1

ρ
(j)
k , k = 1, . . . , K, (18)

utilized in the proposed Criterion 2 below.

Criterion 2: Let v̂
(j)
k be the estimates of vk returned by

P arbitrary initializations of the Criterion-1-equipped M-
IGLS procedure of Table 1, k = 1, . . . , K, j = 1, . . . , P . If

ρ
(j)
k ≥ ρk, then v̂

(j)
k is considered a reliable estimate of the

vk; otherwise we declare it as unreliable. �

Table 2: Cross-correlation Enhanced M-IGLS

For j := 1 to P
1) Execute M-IGLS of Table 1 with arbitrary

initialization and obtain estimates v̂k, k = 1, . . . , K.
2) If estimates are Criterion-1-compliant,

v̂
(j)
k := v̂k, k = 1, . . . , K;

else go to 1).
End
For k := 1 to K

3) Identify reliable estimates for vk according
to Criterion 2.

4) Calculate the average over all reliable estimates v̂k

by (19).
End

5) Set V̂ , [v̂1, . . . , v̂K ].
6) Execute M-IGLS of Table 1 with initialization

B̂(0) = sgn

{(
V̂

T

R̂−1
y V̂

)−1

V̂
T

R̂−1
y Y

}
.

Finally, we average our reliable (according to Criterion 2 )
estimates of the effective signatures vk to produce one last
high-quality initialization of the M-IGLS algorithm of Table
1. Let Sk denote the set of all reliable estimates of vk ac-
cording to Criterion 2 and let |Sk| denote the cardinality of

Sk. Our averaged estimate of matrix V is now given by V̂
with

V̂ ,

[
v̂1, . . . , v̂K

]
where v̂k =

1

|Sk|

∑

j∈Sk

v̂
(j)
k , k = 1 . . . , K,

(19)

i.e. v̂k is the average over all reliable estimates of vk accord-
ing to Criterion 2. We execute M-IGLS in Table 1 a final

time initialized at B̂(0) = sgn

{(
V̂

T

R̂−1
y V̂

)−1

V̂
T

R̂−1
y Y

}
.

We call M-IGLS with both Criteria 1 and 2 incorporated,
Cross-Correlation enhanced M-IGLS (CC-M-IGLS) and sum-
marize the complete procedure in Table 2.

4. EXPERIMENTAL STUDIES
A technically firm and keen measure of quality of an active
steganalysis solution is the difference in the bit-error-rate
(BER) experienced by the intended recipient and the ste-
ganalyst. The intended recipient in our studies may be
using any of the following three message recovery meth-
ods: (i) Standard signature matched-filtering (MF) with
the known signatures sk, k = 1, ..., K, (ii) sample-matrix-
inversion MMSE (SMI-MMSE) filtering with known signa-

tures sk and estimated host autocorrelation matrix R̂y (see
(3)); (iii) ideal MMSE filtering with known signatures sk

and known true host autocorrelation matrix Rx which serves
as the ultimate performance bound reference for all meth-
ods. In terms of blind active steganalysis (neither sk nor Rx

known), we will examine (iv) the developed M-IGLS algo-
rithm in Table 1 alone and (v) CC-M-IGLS of Table 2 with
P = 20 Criterion-1 runs. Finally, the performance of two
typical ICA-based blind signal separation (BSS) algorithms,
(vi) FastICA [35], and (vii) JADE [36], will also be included
in the studies for comparison purposes.
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Figure 3: Average BER versus per-message distor-
tion (512 × 512 Baboon, L = 63, K = 4 messages of
4Kbits each, σ2

n = 3dB).
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Figure 4: Average BER versus per-message distor-
tion (256 × 256 Baboon, L = 63, K = 4 messages of
1Kbit each, σ2

n = 3dB).

We first consider as a host example the gray-scale 512× 512
“Baboon” image. We perform 8 × 8 block DCT embedding
by (1) over all bins except the dc coefficient with K = 4
distinct arbitrary signatures sk ∈ R

63, k = 1, . . . , K. The

hidden message embedded by each signature is 5122

82 = 4, 096
bits long. The per-message mean square distortion due
to each embedded message is set to be the same for all
messages, i.e. Dk = A2

k = D
K

, k = 1, . . . , 4. For the
sake of generality, we also incorporate white Gaussian noise
of variance σ2

n = 3dB. Fig. 3 shows the average BER
(over all K = 4 messages) of all methods (i) through (vii)
listed above as a function of the host distortion per mes-
sage. While the independent/principal-component methods
(FastICA and JADE) are failing to carry out effective ac-
tive SS image steganalysis, to our satisfaction CC-M-IGLS
SS steganalysis is rather close in BER performance to the
ideal MMSE detector bound where both the embedding sig-
natures and the clean host autocorrelation matrix Rx are
perfectly known. It could be argued that for this host and

Figure 5: 512 × 512 gray-scale Boat image.

rather large size of M = 4, 096 bits per message, CC-M-
IGLS offers a moderate gain only in comparison with M-
IGLS of Table 1 by itself.

In Fig. 4, however, we repeat the exact same experimental
study on the smaller 256× 256 version of the Baboon image

Fig. 1(a) with K = 4 hidden messages of length only 2562

82 =
1, 024 bits per message. CC-M-IGLS now provides dramatic
performance improvement over M-IGLS which surely justi-
fies the extra computational cost and extraction delay. At
the same time, comparing with Fig. 3, the gap between CC-
M-IGLS and ideal MMSE increases as the hidden message
size (use of signature, individually) decreases.

For additional experimental validation, the studies of Fig. 3
and Fig. 4 are repeated on the familiar “Boat” image (shown
in Fig. 5) in its 512× 512 and 256× 256 gray-scale versions
(Fig. 6 and Fig. 7, correspondingly). Identical conclusions
are drawn regarding the effectiveness of CC-M-IGLS blind
active steganalysis.

Finally, to examine the behavior of CC-M-IGLS under
increased-density small-message hiding, we consider the 256×
256 gray-scale “F-16 Aircraft” image (shown in Fig. 8) with
K = 4 or K = 8 hidden messages of length 1Kbit each.
Recovery performance plots are given in Fig. 9 and Fig. 10,
correspondingly. An encompassing conclusion over all exe-
cuted experiments is that CC-M-IGLS remains a most ef-
fective technique to extract blindly hidden messages, while
extraction becomes more challenging as the length of hid-
den messages (use of an embedding signature) decreases or
the number of hidden messages (number of used signatures)
increases.

5. CONCLUSIONS
In this paper we considered the problem of active blind
spread-spectrum steganalysis and attempted to recover un-
known messages hidden in image hosts via multi-signature
spread-spectrum embedding. Neither the original host nor
the embedding signatures are assumed available. We first
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Figure 6: Average BER versus per-message distor-
tion (512×512 Boat, L = 63, K = 4 messages of 4Kbits
each, σ2

n = 3dB).
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Figure 7: Average BER versus per-message distor-
tion (256×256 Boat, L = 63, K = 4 messages of 1Kbit
each, σ2

n = 3dB).

Figure 8: 256 × 256 gray-scale Aircraft image.
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Figure 9: Average BER versus per-message distor-
tion (256 × 256 Aircraft, L = 63, K = 4 messages of
1Kbit each, σ2

n = 3dB).
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Figure 10: Average BER versus per-message distor-
tion (256 × 256 Aircraft, L = 63, K = 8 messages of
1Kbit each, σ2

n = 3dB).

developed a low complexity multi-signature iterative gener-
alized least-squares (M-IGLS) core algorithm. Cross-correlation
enhanced M-IGLS (CC-M-IGLS), a procedure based on sta-
tistical analysis of repeated independent M-IGLS processing
of the host, offers most effective blind hidden message recov-
ery. In fact, experimental studies showed that CC-M-IGLS
can achieve probability of error rather close to what may
be attained with known embedding signatures and known
original host autocorrelation matrix and present ifself as an
efficient countermeasure to conventional5 SS steganography.

5In [26], Bas and Cayre present an interesting signature-
based additive embedding approach different to (1) that is
host-vector-by-host-vector dependent and would withstand
IGLS-based active stegnalysis. The embedding is, however,
very sensitive to noise that would lead to high recovery error
rates by intended recipients and limit the applicability to
general covert communication problems.
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APPENDIX
Proof of (11)
The GLS cost function in (9) can be rewritten as

J = ‖R
− 1

2
z Y −R

− 1
2

z VB‖2
F (20)

= tr
{
R−1

z YYT
}
− tr

{
R−1

z YBT VT
}
−

tr
{
R−1

z VBYT
}

+ tr
{
R−1

z VBBT VT
}

(21)

where tr{·} denotes the trace of a matrix.

For a given message matrix B, the GLS optimal estimate of
V can be obtain by differentiating the cost function J with
respect to VT and setting the outcome equal to the zero
matrix,

∂J

∂VT
= −R−1

z YBT + R−1
z V(BBT ) = 0, (22)

⇒ V = YBT (BBT )−1. (23)

�

Proof of (12)
We manipulate the GLS cost function in the form of (21) to
write

J = tr
{
R−1

z YYT
}
− tr

{
VT R−1

z YBT
}
−

tr
{
R−1

z VBYT
}

+ tr
{
VT R−1

z VBBT
}

. (24)

Pretend that V is known and relax the domain of the symbol
information matrix to the real space, B ∈ R

K×M . The GLS
optimal estimate of B ∈ R

K×M can be calculated again by
differentiation

∂J

∂BT
= −VT R−1

z Y + VT R−1
z VB = 0, (25)

⇒ B = (VT R−1
z V)−1VT R−1

z Y. (26)

�

Proof of (13)
Since Ry = E{yyT } = VVT + Rz, by the Matrix Inversion
Lemma (also known as Woodbury’s Identity [37]), we can
obtain

R−1
y = R−1

z − R−1
z V(I + VT R−1

z V)−1VT R−1
z . (27)

Then,

VT R−1
y V = VT R−1

z V −

VT R−1
z V(I + VT R−1

z V)−1VT R−1
z V

= VT R−1
z V[I − (I + VT R−1

z V)−1VT R−1
z V]

= VT R−1
z V(I + VT R−1

z V)−1

[(I + VT R−1
z V) −VT R−1

z V]

= VT R−1
z V(I + VT R−1

z V)−1. (28)

By the property of the inverse of a product of matrices [37],

(VT R−1
y V)−1 = (I + VT R−1

z V)(VT R−1
z V)−1

= (VT R−1
z V)−1 + I. (29)

We combine the results of (27) and (29) and finally obtain

(VT R−1
y V)−1VT R−1

y =
(
(VT R−1

z V)−1 + I
)

VT

(
R−1

z − R−1
z V(I + VT R−1

z V)−1VT R−1
z

)
(30)

= (VT R−1
z V)−1VT R−1

z . (31)
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